

Portfolio I Sample

1. Evaluate $\int_{1}^{5} x^{2} e^{2 x} d x$.

Solution: In order to compute the definite integral $\int_{1}^{5} x^{2} e^{2 x} d x$, we will first compute the indefinite integral $\int x^{2} e^{2 x} d x$ and then evaluate that function at the endpoints.
Part 1: To compute $\int x^{2} e^{2 x} d x$, we will use integration by parts by choosing functions $f_{1}(x)$ and $g_{1}^{\prime}(x)$ to use the equation

$$
\text { (*) } \int f_{1}(x) g_{1}^{\prime}(x) d x=f_{1}(x) g_{1}(x)-\int f_{1}^{\prime}(x) g_{1}(x) d x .
$$

Choose $f_{1}(x)=x^{2}$ and $g_{1}^{\prime}(x)=e^{2 x}$. Differentiating $f_{1}(x)$ gives $f_{1}^{\prime}(x)=2 x$ and integrating $g_{1}^{\prime}(x)$ gives $g_{1}(x)=\frac{1}{2} e^{2 x}$. Placing these four functions into the equation (*), we obtain

$$
\int\left(x^{2}\right)\left(e^{2 x}\right) d x=\left(x^{2}\right)\left(\frac{1}{2} e^{2 x}\right)-\int(2 x)\left(\frac{1}{2} e^{2 x}\right) d x
$$

Simplifying, we have

$$
\int x^{2} e^{2 x} d x=\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x
$$

The right-hand side of the equation still has an integral that we need to compute. We will use integration by parts again. Choose $f_{2}(x)=x$ and $g_{2}^{\prime}(x)=e^{2 x}$. Differentiating $f_{2}(x)$ gives $f_{2}^{\prime}(x)=1$ and integrating $g_{2}^{\prime}(x)$ gives $g_{2}(x)=\frac{1}{2} e^{2 x}$. Placing these functions into their corresponding spots in the equation (*),
we obtain

$$
\begin{aligned}
\int x e^{2 x} d x & =(x)\left(\frac{1}{2} e^{2 x}\right)-\int(1)\left(\frac{1}{2} e^{2 x}\right) d x \\
& =\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x
\end{aligned}
$$

We can evaluate the integral on the right-hand side to obtain

$$
\int x e^{2 x} d x=\frac{1}{2} x e^{2 x}-\frac{1}{2}\left(\frac{1}{2} e^{2 x}\right)+C=\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+C
$$

(We've added the " $+c$ " at this stage since antiderivatives are only mique up to a constant term.)
Finally, we can return to our original integral to obtain

$$
\begin{aligned}
\int x^{2} e^{2 x} d x & =\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x \\
& =\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right)+C \\
& =\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C
\end{aligned}
$$

Part 2: Now that we have a formula for $\int x^{2} e^{2 x} d x$, we can compute $\int_{1}^{5} x^{2} e^{2 x} d x$ by evaluating the antiderivative at the Units of integration, as follows:

$$
\begin{aligned}
\int_{1}^{5} x^{2} e^{2 x} d x= & \frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\left.\frac{1}{4} e^{2 x}\right|_{1} ^{5} \\
= & \left(\frac{1}{2}(5)^{2} e^{2(5)}-\frac{1}{2}(5) e^{2(5)}+\frac{1}{4} e^{2(5)}\right) \\
& -\left(\frac{1}{2}(1)^{2} e^{2(1)}-\frac{1}{2}(1) e^{2(1)}+\frac{1}{4} e^{2(1)}\right) \\
= & \frac{25}{2} e^{10}-\frac{5}{2} e^{10}+\frac{1}{4} e^{10}-\frac{1}{2} e^{2}+\frac{1}{2} e^{2}+\frac{1}{4} e^{2} \\
= & \frac{41}{4} e^{10}+\frac{1}{4} e^{2}
\end{aligned}
$$

Thus, using integration by parts, $\quad \int_{1}^{5} x^{2} e^{2 x} d x=\frac{41}{4} e^{10}+\frac{1}{4} e^{2}$.
2. Evaluate $\int \sin (x) e^{x} d x$.

Solution: For notational purposes, denote

$$
I=\int \sin (x) e^{x} d x
$$

In order to compute the integral I, we will use integration by parts via the formula
(*) $\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$.
To that ind, choose $f_{1}(x)=\sin (x)$ and $g_{1}^{\prime}(x)=e^{x} \quad$ Differentiating $f_{1}(x)$ gives $f_{1}^{\prime}(x)=\cos (x)$ and integrating $g_{1}^{\prime}(x)$ gives $g_{1}(x)=e^{x}$. Using the equation (*) above, we obtain
(**) $I=\int \sin (x) e^{x} d x=\sin (x) e^{x}-\int \cos (x) e^{x} d x$.
We will repeat the process to evalcate $\int \cos (x) e^{x} d x$ by choosing $f_{2}(x)=\cos (x)$ and $g_{2}^{\prime}(x)=e^{x}$. Differentiating $f_{2}(x)$ gives $f_{2}^{\prime}(x)=-\sin (x)$ and integrating $g_{2}^{\prime}(x)$ gives $g_{2}(x)=e^{x}$.
Using (*), we have

$$
\begin{aligned}
\int \cos (x) e^{x} d x & =\cos (x) e^{x}-\int(-\sin (x)) e^{x} d x \\
& =\cos (x) e^{x}+\int \sin (x) e^{x} d x \\
& =\cos (x) e^{x}+I
\end{aligned}
$$

Noticing that the integral we are boking for has appeared, we return to the equation $\left(*^{*}\right)$

$$
\begin{aligned}
& I=\sin (x) e^{x}-\int \cos (x) e^{x} d x \\
& I=\sin (x) e^{x}-\left(\cos (x) e^{x}+I\right) \\
& I=\sin (x) e^{x}-\cos (x) e^{x}-I
\end{aligned}
$$

We can rearrange the equation above to solve for I as follows:

$$
\begin{aligned}
I & =\sin (x) e^{x}-\cos (x) e^{x}-I \\
2 I & =\sin (x) e^{x}-\cos (x) e^{x}+C \\
I & =\frac{1}{2}\left(\sin (x) e^{x}-\cos (x) e^{x}\right)+C
\end{aligned}
$$

(We added the "+e" at the first stage where we did not have integrals - disguised as I or otherwise - since integrals are only unique up to a constant.)

Therefore, using integration by parts, we have

$$
\int \sin (x) e^{x} d x=\frac{1}{2}\left(\sin (x) e^{x}-\cos (x) e^{x}\right)+C
$$

3. Evaluate $\int(\tan (x))^{3} d x$.

To evaluate $\int(\tan (x))^{3} d x$, we will start by replacing $(\tan (x))^{2}$ according to the Pythagorean identity

$$
(\tan (x))^{2}=(\sec (x))^{2}-1
$$

This replacement gives us

$$
\begin{aligned}
\int(\tan (x))^{3} d x & =\int \tan (x)(\tan (x))^{2} d x \\
& \left.=\int \tan (x)(\sec (x))^{2}-1\right) d x \\
& =\int\left(\tan (x)(\sec (x))^{2}-\tan (x)\right) d x \\
& =\int \tan (x)(\sec (x))^{2} d x-\int \tan (x) d x
\end{aligned}
$$

We can compute $\int \tan (x)(\sec (x))^{2} d x$ by using the substitution

$$
u=\tan (x)
$$

which forces

$$
d u=(\sec (x))^{2} d x \text {. }
$$

Hence,

$$
\begin{aligned}
\int \tan (x)(\sec (x))^{2} d x & =\int u d u \\
& =\frac{u^{2}}{2}+C \\
& =\frac{(\tan (x))^{2}}{2}+C
\end{aligned}
$$

The only remaining task is to compute $\int \tan (x) d x$. This was done in class by replacing $\tan (x)$ with $\frac{\sin (x)}{\cos (x)}$ and then using substitution. The result is

$$
\int \tan (x) d x=\ln |\sec (x)|+C
$$

Now, returning to our original integral, we have

$$
\begin{aligned}
\int(\tan (x))^{3} d x & =\int \tan (x)(\sec (x))^{2} d x-\int \tan (x) d x \\
& =\frac{(\tan (x))^{2}}{2}-\ln |\sec (x)|+C
\end{aligned}
$$

4. Evaluate $\int \sqrt{x^{2}+4 x+3} d x$.

In order to evaluate $\int \sqrt{x^{2}+4 x+3} d x$, we will first rewrite the expression under the square root as a sum or difference of squares. To do so, we will complete the square using the formula

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+c-\left(\frac{b}{2 a}\right)^{2}
$$

Thus, we can write

$$
\begin{aligned}
x^{2}+4 x+3 & =1 \cdot\left(x+\frac{4}{2 \cdot 1}\right)^{2}+3-\left(\frac{4}{2 \cdot-1}\right)^{2} \\
& =(x+2)^{2}+3-(2)^{2} \\
& =(x+2)^{2}+3-4 \\
& =(x+2)^{2}-1 .
\end{aligned}
$$

Hence, our integral becomes

$$
\int \sqrt{x^{2}+4 x+3} d x=\int \sqrt{(x+2)^{2}-1} d x
$$

Now that our integrand is a square coot of a differ nance of squares, we will use a trigonometric substitution.
To start, consider the following triangle for reference:

We will use the relation

$$
\begin{aligned}
& \sec \theta=\frac{x+2}{1} \\
& \sec \theta=x+2 \quad(\text { or } \quad x=\sec \theta-2)
\end{aligned}
$$

This forces $d x=\sec \theta \tan \theta d \theta$.
Returning to our integral, we can make the substitutions:

$$
\int \sqrt{(x+2)^{2}-1} d x=\int \sqrt{(\sec \theta)^{2}-1} \sec \theta \tan \theta d \theta
$$

Recall the Pythagorian identity
(*) $(\sec \theta)^{2}-1=(\tan \theta)^{2}$.
Using this identity, we can simplify ow integral

$$
\begin{aligned}
\int \sqrt{(\sec \theta)^{2}-1} \sec \theta \tan \theta d \theta & =\int \sqrt{(\tan \theta)^{2}} \sec \theta \tan \theta d \theta \\
& =\int \sec \theta(\tan \theta)^{2} d \theta
\end{aligned}
$$

(Since we are computing an indefinite integral, we may assume/assert that $\sqrt{(\tan \theta)^{2}}=\tan \theta$.)
Now, we must compute the trigonometric integral

$$
I=\int \sec \theta(\tan \theta)^{2} d \theta
$$

To that end, we use (*) again to write

$$
\begin{aligned}
I=\int \sec \theta(\tan \theta)^{2} d \theta & =\int \sec \theta\left((\sec \theta)^{2}-1\right) d \theta \\
& =\int(\sec \theta)^{3}-\sec \theta d \theta
\end{aligned}
$$

As computed in class, we know that

$$
\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C_{0}
$$

All that remains is to compute $\int(\sec (\theta))^{3} d \theta$. To that end, we will use integration by parts with the formula
(**) $\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$
with the chore $f_{1}(\theta)=\sec \theta$ and $g_{1}^{\prime}(\theta)=(\sec \theta)^{2}$. Differentiating $f(x)$, we obtain $f_{1}^{\prime}(\theta)=\sec \theta \tan \theta$ and integrating $g^{\prime}(\theta)$ we obtain $g_{1}(\theta)=\tan \theta$. Using the equation $(* *)$, we have

$$
\begin{aligned}
\int(\sec \theta)^{3} d \theta & =\sec \theta \tan \theta-\int(\sec \theta \tan \theta) \tan \theta d \theta \\
& =\sec \theta \tan \theta-\int(\tan \theta)^{2} \sec \theta d \theta \\
& =\sec \theta \tan \theta-I
\end{aligned}
$$

Returning to our last equation involving I, we have

$$
\begin{aligned}
I & =\int(\sec \theta)^{3} d \theta-\int \sec \theta d \theta \\
& =\sec \theta \tan \theta-I-\ln |\sec \theta \tan \theta|
\end{aligned}
$$

Rearranging and solving for I, we obtain

$$
\begin{aligned}
2 I & =\sec \theta \tan \theta-\ln |\sec \theta \tan \theta|+C \\
I & =\frac{1}{2}(\sec \theta \tan \theta-\ln |\sec \theta \tan \theta|)+C .
\end{aligned}
$$

(We added the "+C"here since antiderivatives are only unique up to the addition of a constant.)
Therefore, $\int \sec \theta(\tan \theta)^{2} d \theta=\frac{1}{2}(\sec \theta \tan \theta-\ln |\sec \theta \tan \theta|)+C$.

Returning to our triangle, we need to return to our original variable x. We have

$$
\sec \theta=x+2, \quad \tan \theta=\sqrt{(x+2)^{2}-1} .
$$

So,

$$
\begin{aligned}
\int \sqrt{x^{2}+4 x+3} d x & =\int \sqrt{(x+2)^{2}-1} d x \\
& =\int \sec \theta(\tan \theta)^{2} d \theta \\
& =\frac{1}{2}(\sec \theta \tan \theta-\ln |\sec \theta+\tan \theta|)+C \\
& =\frac{1}{2}\left((x+2) \sqrt{(x+2)^{2}-1}-\ln \left|x+2+\sqrt{(x+2)^{2}-1}\right|+C\right.
\end{aligned}
$$

5. Evaluate $\int \frac{1}{x^{3}+2 x^{2}+x} d x$

Solution: Noticing that the denominator of the integrand is a polynomial that can be factored, we will start with de composing the integrand ria partial fractions.
Since $x^{3}+2 x^{2}+x=x(x+1)^{2}$, we will use the form

$$
\begin{aligned}
\frac{1}{x^{3}+2 x^{2}+x} & =\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} \\
& =\frac{A(x+1)^{2}+B_{x}(x+1)+C x}{x(x+1)^{2}}
\end{aligned}
$$

The denominators are equal so the numerators must be equal also:

$$
\begin{aligned}
1 & =A(x+1)^{2}+B x(x+1)+C x \\
& =A\left(x^{2}+2 x+1\right)+B x^{2}+B x+C x \\
& =A x^{2}+2 A x+A+B x^{2}+B x+C x \\
& =(A+B) x^{2}+(2 A+B+C) x+A
\end{aligned}
$$

The coefficient of x^{2} on both sides must be the same so $D=A+B$. Similarly, the coefficient of x must be the same on both sides so $\sigma=2 A+B+C$. Lastly, the constant term must be the same on both sides so $1=A$. The resulting system of equations we must solve is

$$
\begin{aligned}
& 0=A+B \\
& 0=2 A+B+C \\
& 1=A
\end{aligned}
$$

Solving this system leads to

$$
A=1, \quad B=-1, \quad C=-1
$$

Therefore, our integral becomes

$$
\begin{aligned}
\int \frac{1}{x^{3}+2 x^{2}+x} d x & =\int\left(\frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d x \\
& =\int \frac{1}{x} d x-\int \frac{1}{x+1} d x-\int \frac{1}{(x+1)^{2}} d x
\end{aligned}
$$

We we address each of the integrals on the right separately.
First, $\int \frac{1}{x} d x=\ln |x|+C$.
Second, choose $u=x+1$. Then $d u=d x$ so

$$
\int \frac{1}{x+1} d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |x+1|+C .
$$

Third, choose $u=x+1$, again. (so $d u=d x$ again also)
Hence, $\int \frac{1}{(x+1)^{2}} d x=\int(x+1)^{-2} d x$

$$
\begin{aligned}
& =\int u^{-2} d u \\
& =-u^{-1}+C \\
& =-(x+1)^{-1}+C \\
& =\frac{-1}{x+1}+C
\end{aligned}
$$

Putting this all together, we have

$$
\int \frac{1}{x^{3}+2 x^{2}+x} d x=\ln |x|-\ln |x+1|+\frac{1}{x+1}+C
$$

6. Determine if $\int_{-1}^{1} \frac{1}{x} d x$ converges or diverges.

Solution: The improper integral $\int_{-1}^{1} \frac{1}{x} d x$ is defined as the sum $\int_{-1}^{1} \frac{1}{x} d x=\int_{-1}^{0} \frac{1}{x} d x+\int_{0}^{1} \frac{1}{x} d x \quad$ and so $\int_{-1}^{1} \frac{1}{x} d x$ will converge only if both $\int_{-1}^{0} \frac{1}{x} d x$ and $\int_{0}^{1} \frac{1}{x} d x$ converge. To that end, we will start by computing $\int_{0}^{1} \frac{1}{x} d x$ using the definition:

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x} d x & =\lim _{t \rightarrow 0} \int_{t}^{1} \frac{1}{x} d x \\
& =\lim _{t \rightarrow 0}\left(\left.\ln |x|\right|_{t} ^{1}\right) \\
& =\lim _{t \rightarrow 0} \ln |1|-\ln |t| \\
& =-\infty
\end{aligned}
$$

Hence, $\int_{0}^{1} \frac{1}{x} d x$ diverges. This fact means $\int_{-1}^{1} \frac{1}{x} d x$ diverges as well.
7. Determine if $\int_{0}^{\infty} e^{-2 x}(\sin (x))^{2} d x$ converges or diverges.

Solution: In order to determine if the given improper integral converges or diverges, we will use the comparison test for integrals.
Let $f(x)=e^{-2 x}(\sin (x))^{2}$ and let $g(x)=e^{-2 x}$. For x in $[0, \infty), \quad 0 \leq(\sin (x))^{2} \leq 1$ and $e^{-2 x} \geq 0$, so

$$
\left.0 \leq e^{-2 x}(\sin (x))^{2} \leq e^{-2 x} \quad \text { (that is, } 0 \leq f(x) \leq g(x)\right) \text {. }
$$

Further, $f(x)$ and $g(x)$ are continuous for all x in $[0, \infty)$. By the integral comparison test, if $\int_{0}^{\infty} e^{-2 x} d x$ converges, then $\int_{0}^{\infty} e^{-2 x}(\sin (x))^{2} d x$ converges. We will now investigate the improper integral $\int_{0}^{\infty} e^{-2 x} d x$ using the definition. To that end, consider

$$
\begin{aligned}
\int_{0}^{\infty} e^{-2 x} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-2 x} d x \\
& =\lim _{t \rightarrow \infty}\left(\left.\frac{-1}{2} e^{-2 x}\right|_{0} ^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{-1}{2} e^{-2 t}+\frac{1}{2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Thus, $\int_{0}^{\infty} e^{-2 x} d x$ converges which gives us that $\int_{0}^{\infty} e^{-2 x}(\sin (x))^{2} d x$ also converges.

