

Portfolio I Sample I. Evaluate $\int_{1}^{5} x^2 e^{2x} dx$.

Solution: In order to compute the definite integral
$$\int x^2 e^{2x} dx$$
 and then
will first compute the indefinite integral $\int x^2 e^{2x} dx$ and then
evolvate that function at the endpoints.
Part 1: To compute $\int x^2 e^{2x} dx$, we will use integration
by parts by choosing functions $f_1(x)$ and $g_1'(x)$ to use the equation
 $(*) \int f_1(x) g_1'(x) dx = f(x) g(x) - \int f_1'(x) g(x) dx$.
Choose $f_1(x) = x^2$ and $g_1'(x) = e^{2x}$. Differentiating $f_1(x)$ gives
 $f_1'(x) = 2x$ and integrating $g_1'(x)$ gives $g_1(x) = \frac{1}{2}e^{2x}$.
Placing these four functions into the equation $(*)$, we
obtain
 $\int (x^2)(e^{2x}) dx = (x^2)(\frac{1}{2}e^{2x}) - \int (2x)(\frac{1}{2}e^{2x}) dx$.
Simplifying, we have
 $\int x^2 e^{2x} dx = \frac{1}{2}x^2e^{2x} - \int xe^{2x} dx$.

The right-hand side of the equation still has an integral that we need to compute. We will use integration by parts again. Choose $f_2(x) = x$ and $g'_2(x) = e^{2x}$. Differentiating $f'_2(x)$ gives $f'_2(x) = 1$ and integrating $g'_2(x)$ gives $g_2(x) = \frac{1}{2}e^{2x}$. Placing these functions into their corresponding spots in the equation (*)

We obtain

$$\int xe^{2x} dx = (x)(\frac{1}{2}e^{2x}) - \int (1)(\frac{1}{2}e^{2x}) dx$$

$$= \frac{1}{2}xe^{2x} - \frac{1}{2}\int e^{2x} dx$$
We can evaluate the integral on the right-hand side to obtain

$$\int xe^{2x} dx = \frac{1}{2}xe^{2x} - \frac{1}{2}(\frac{1}{2}e^{2x}) + C = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$
(We've added the "+C" of this stage since antidurivatives
are only unique up to a constant term.)
Finally, we can return to air original integral to obtain

$$\int x^2e^{2x} dx = \frac{1}{2}x^2e^{2x} - \int xe^{2x} dx$$

$$= \frac{1}{2}x^2e^{2x} - (\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}) + C$$

$$= \frac{1}{2}x^2e^{2x} - (\frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x}) + C$$
Port 2: Now that we have a formula for $\int x^2e^{2x} dx$, we
can compute $\int_{1}^{5}x^2e^{2x} dx$ by evaluating the antidurivative.
at the Units of integration, as follows:

$$\int_{1}^{5}x^2e^{2x} dx = \frac{1}{2}x^2e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x} \int_{1}^{5}$$

$$= (\frac{1}{2}(5)^2e^{2(5)} - \frac{1}{2}(5)e^{2(5)} + \frac{1}{4}e^{2(5)})$$

$$- (\frac{1}{2}(1)^2e^{2(1)} - \frac{1}{2}(1)e^{2(1)} + \frac{1}{4}e^{2(1)})$$

$$= \frac{25}{2}e^{10} - \frac{5}{2}e^{10} + \frac{1}{4}e^{10} - \frac{1}{2}e^{2} + \frac{1}{4}e^{2}$$
hus, using integration by ports, $\int_{1}^{5}x^2e^{2x} dx = \frac{41}{4}e^{10} + \frac{1}{4}e^{2}$

2. Evaluate
$$\int \sin(x)e^{x} dx$$
.
Solution: For notational purposes, denote
 $I = \int \sin(x)e^{x} dx$.
In order to compute the integral I, we will us integration
by parts via the formula
(*) $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x) dx$.
To that end, choose $f_1(x) = \sin(k)$ and $g_1'(x) = e^{x}$.
Differentiating
 $f_1(x)$ gives $f_1'(x) = \cos(x)$ and integrating $g_1'(x)$ gives $g_1(x) = e^{x}$.
Using the equation (*) above, we obtain
(***) $I = \int \sin(x)e^{x} dx = \sin(x)e^{x} - \int \cos(x)e^{x} dx$.
We will repeat the process to evaluate $\int \cos(x)e^{x} dx$ by
choosing $f_2(x) = \cos(x)$ and $g_2'(x) = e^{x}$. Differentiating $f_1(x)$
gives $f_2'(x) = -\sin(x)$ and $(x) = e^{x}$. Differentiating $f_2(x)$
 $gives f_2'(x) = -\sin(x)$ and $(x) = e^{x}$. Differentiating $f_2(x)$
 $gives f_2'(x) = -\sin(x)$ and $(x) = e^{x}$. Differentiating $f_2(x) = e^{x}$.
Using (*), we have
 $\int \cos(x)e^{x} dx = \cos(x)e^{x} - \int (-\sin(x))e^{x} dx$.
 $= \cos(x)e^{x} + I$
Noticing that the integrature are boking for has appeared.
We return to the equation (**)
 $I = \sin(x)e^{x} - \int \cos(x)e^{x} dx$
 $I = \sin(x)e^{x} - (\cos(x)e^{x} + I)$
 $I = \sin(x)e^{x} - (\cos(x)e^{x} + I)$
 $I = \sin(x)e^{x} - (\cos(x)e^{x} - I)$

Salmon 4

We can rearrange the equation above to solve for I as follows?

I = sin(x)e^x - cos(x)e^x - I
2I = sin(x)e^x - cos(x) e^x + C
I =
$$\frac{1}{2}(sin(x)e^{x} - cos(x)e^{x}) + C$$

(We added the "+C" at the first stage where we did not
have integrals - disguised as I or otherwise - since integrals
are only mique up to a constant.)
herefore, using integration by ports, we have

$$\int \sin(x) e^{x} dx = \frac{1}{\alpha} \left(\sin(x) e^{x} - \cos(x) e^{x} \right) + C.$$

Solute
$$\int (\tan |x|)^3 dx$$
.
To evaluate $\int (\tan |x|)^3 dx$, we will start by replacing $(\tan (x))^2$
according to the Pythagarean identity
 $(\tan (x))^2 = (\sec (x))^2 - 1$.
This replacement gives us
 $\int (\tan (x))^3 dx = \int \tan (x) (\tan (x))^2 dx$
 $= \int \tan (x) (\sec (x))^2 - 1) dx$
 $= \int (\tan (x) (\sec (x))^2 - \tan (x)) dx$
 $= \int \tan |x| (\sec (x))^2 dx - \int \tan (x) dx$.
We can compute $\int \tan (x) (\sec (x))^2 dx$ by using the substitution
 $u = \tan (x)$
which forces
 $du = (\sec (x))^2 dx$.

Hence,

$$\int \tan(x) \left(\sec(x)\right)^2 dx = \int u \, du$$

$$= \frac{u^2}{2} + C$$

$$= \frac{(\tan(x))^2}{z} + C$$
The only remaining task is to compute $\int \tan(x) dx$. This was done in class by replacing $\tan(x)$ with $\frac{\sin(x)}{\cos(x)}$ and then using substitution. The result is $\int \tan(x) dx = \ln |\sec(x)| + C$.

Salmon 6

Now, returning to our original integral, we have

$$\int (\tan(x))^3 dx = \int \tan(x) (\sec(x))^2 dx - \int \tan(x) dx$$

$$= \frac{(\tan(x))^2}{2} - \ln|\sec(x)| + C$$

Salmon 7 4. Evaluate JJX2+4X+3' dx. In order to evaluate), [x²+4x+3 dx, we will first rewrite the expression under the square root as a sum or difference of squares. To do so, we will complete the square using the firmula $ax^2+bx+c = a\left(x+\frac{b}{2a}\right)^2 + c - \left(\frac{b}{2a}\right)^2$ Thus, we can write $x^{2} + 4x + 3 = 1 \cdot (x + \frac{4}{2 \cdot 1})^{2} + 3 - \frac{4}{2 \cdot 1}^{2}$ $= (x+2)^{2} + 3 - (2)^{2}$ $=(x+2)^2+3-4$ $= (x+2)^2 - 1$ Hence, our integral becomes $\int x^2 + \frac{y}{x+3} \, dx = \int \sqrt{(x+2)^2 - 1} \, dx \, dx$ Now that air integrand is a square root of a difference of squares, we will use a trigonometric substitution. To start, consider the following triangle for reference: $\frac{+x^2}{\sqrt{9}} \sqrt{(x+2)^2 - 1}$

Salmon 8

We will use the relation $Sec \Theta = \frac{X+Z}{1}$ $sec \Theta = x + 2$ (or $x = sec \Theta - 2$) This forces dx = secOtanOdO. Returning to our integral, we can make the substributions: $\int \sqrt{(x+2)^2 - 1} \, dx = \int \sqrt{(sec0)^2 - 1} \, sec \, O \, tan \, O \, dO \, .$ Recall the Rythagorian identity (*) (sec $0)^2 - 1 = (tan 0)^2$. Using this identity, we can simplify our integral $\int \sqrt{(\sec 0)^2 - 1} \sec 0 \tan 0 \, d0 = \int \sqrt{(\tan 0)^2} \sec 0 \tan 0 \, d0$ = $\int \sec(\tan \theta)^2 d\theta$ (Since we are computing an indefinite integral, we may assume (assert that $\sqrt{[tan0]^2} = tan0$.) Now, we must compute the trigonometric integral $T = \int \sec \Theta(\tan \Theta)^2 d\Theta.$ To that and, we use (*) again to write $I = \int \sec \Theta \left(\tan \Theta \right)^2 d\Theta = \int \sec \Theta \left(\sec \Theta \right)^2 - 1 \right) d\Theta$ = $\int (\sec \Theta)^3 - \sec \Theta \, d\Theta$.

^

Returning to our triangle, we need to return to our original
variable x. We have
see
$$Q = x+2$$
, $\tan Q = \sqrt{(x+2)^2 - 1}$.
So,
 $\int \sqrt{x^2 + 4x + 3} dx = \int \sqrt{(x+2)^2 - 1} dx$
 $= \int \sec Q (\tan Q)^2 dQ$
 $= \frac{1}{2} (\sec Q \tan Q - \ln|\sec Q + \tan Q|) + C$
 $= \frac{1}{2} ((x+2)\sqrt{(x+2)^2 - 1} - \ln|x+2 + \sqrt{(x+2)^2 - 1}|) + C$

5. Evaluate
$$\int \frac{1}{x^3 + 2x^2 + x} dx$$
 Salmon 10

Solution : Noticing that the denominator of the integrand is
a polynomial that can be factored, we will start with
decomposing the integrand ria partial fractions.
Since
$$\chi^3 + 2\chi^2 + \chi = \chi (\chi + 1)^2$$
, we will use the form

$$\frac{1}{x^{3}+2x^{2}+x} = \frac{A}{x} + \frac{B}{x^{2}+1} + \frac{C}{(x+1)^{2}}$$
$$= \frac{A(x+1)^{2} + B_{x}(x+1) + C_{x}}{x(x+1)^{2}}$$

The denominators are equal so the numerators must be equal also:

$$I = A (x^{+1})^{2} + Bx (x+1) + Cx$$

= $A (x^{2}+Zx+1) + Bx^{2}+Bx + Cx$
= $A x^{2}+ 2AX + A+Bx^{2}+Bx + Cx$
= $(A+B)x^{2} + (2A+B+C)x + A$
The coefficient of x^{2} on both sides must be the

Same so
$$D = A + B$$
. Similarly, the coefficient of x
must be the same on both sides so $O = ZA + B + C$.
Lastly, the constant term must be the same on
both sides so $I = A$. The resulting system of equations
we must solve is
 $O = A + B$
 $O = 2A + B + C$

Solving this system leads to

$$A=1, B=-1, C=-1.$$
Therefore, an integral becomes

$$\int \frac{1}{x^{3}+2x^{2}+x} dx = \int \left(\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^{2}}\right) dx$$

$$= \int \frac{1}{x} dx - \int \frac{1}{x+1} dx - \int \frac{1}{(x+1)^{2}} dx.$$
We we address each of the integrals on the
right separately.
First, $\int \frac{1}{x} dx = \ln|x| + C.$
Second, choose $u = x+1$. The $du = dx$ so

$$\int \frac{1}{x+1} dx = \int \frac{1}{u} du = \ln|u| + C = \ln|x+1| + C.$$
Third, choose $u = x+1$, again. (so $du = dx$ again also)
Hence, $\int \frac{1}{(x+1)^{2}} \delta x = \int (x+1)^{-2} dx$

$$= \int u^{2} du$$

$$= -u^{-1} + C.$$
Potting this all together, we have

$$\int \frac{1}{x^{3}+2x^{2}+x} dx = \ln|x| - \ln|x+1| + \frac{1}{x+1} + C.$$

Salman 12

6. Determine if
$$\int_{-1}^{1} \frac{1}{x} dx$$
 converges or diverges.
Solution: The improper integral $\int_{-1}^{1} \frac{1}{x} dx$ is defined as the
sum $\int_{-1}^{1} \frac{1}{x} dx = \int_{-1}^{1} \frac{1}{x} dx + \int_{-1}^{1} \frac{1}{x} dx$ and so
 $\int_{-1}^{1} \frac{1}{x} dx$ will converge only if both $\int_{-1}^{1} \frac{1}{x} dx$ and
 $\int_{0}^{1} \frac{1}{x} dx$ converge. To that end, we will start by
computing $\int_{0}^{1} \frac{1}{x} dx$ using the definition:
 $\int_{0}^{1} \frac{1}{x} dx = \lim_{t \to 0} \int_{t}^{1} \frac{1}{x} dx$
 $= \lim_{t \to 0} (\lim_{t \to 0} \frac{1}{t} \int_{t}^{1} \frac{1}{x} dx$
 $= \lim_{t \to 0} [\lim_{t \to 0} \frac{1}{t} \int_{t}^{1} \frac{1}{x} dx$
 $= \lim_{t \to 0} [\lim_{t \to 0} \frac{1}{t} \int_{t}^{1} \frac{1}{x} dx diverges$. This fact means $\int_{-1}^{1} \frac{1}{x} dx diverges$
as well.

Salnon 13

7. Determine if
$$\int_{0}^{\infty} e^{-2x} (\sin(x)) dx$$
 converges or driverges.

Solution: In order to determine if the given improper integral converges or diverges, we will use the comparison test for integrals. Let $f(x) = e^{-2x} (sin(x))^2$ and let $g(x) = e^{-2x}$, For x in $[0, \infty)$, $0 \leq (\sinh(x))^2 \leq l$ and $e^{-2x} \geq 0$, so $0 \leq e^{-2x} (\sin(x))^2 \leq e^{-2x} (+h_{\text{of}} is, 0 \leq f(x)) \leq g(x)).$ For ther, f(x) and g(x) are continuous for all x in [0,00). By the integral comparison test, if for enverges, then for e-2x(sin(x))² dx converges. We will now investigate the improper integral for end using the definition. To that end, consider $\int_{0}^{\infty} e^{-2x} dx = \lim_{t \to \infty} \int_{0}^{t} e^{-2x} dx$ $=\lim_{t\to\infty}\left(\frac{-1}{2}e^{-2x}/_{\delta}^{t}\right)$ $= \lim_{z \to \infty} \left(\frac{-1}{z} e^{-2t} + \frac{1}{z} \right)$ = 1 Thus,) e-2x dx converges which gives us that $\int_{0}^{\infty} e^{-ZX} \left(sin(X) \right)^2 clx also converges.$